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Modeling, state estimation, 
and optimal control for the US 
COVID‑19 outbreak
calvin tsay1,3, fernando Lejarza1,3, Mark A. Stadtherr1 & Michael Baldea1,2*

The novel coronavirus SARS‑CoV‑2 and resulting COVID‑19 disease have had an unprecedented spread 
and continue to cause an increasing number of fatalities worldwide. While vaccines are still under 
development, social distancing, extensive testing, and quarantining of confirmed infected subjects 
remain the most effective measures to contain the pandemic. These measures carry a significant 
socioeconomic cost. In this work, we introduce a novel optimization‑based decision‑making 
framework for managing the COVID‑19 outbreak in the US. This includes modeling the dynamics of 
affected populations, estimating the model parameters and hidden states from data, and an optimal 
control strategy for sequencing social distancing and testing events such that the number of infections 
is minimized. The analysis of our extensive computational efforts reveals that social distancing and 
quarantining are most effective when implemented early, with quarantining of confirmed infected 
subjects having a much higher impact. Further, we find that “on‑off” policies alternating between 
strict social distancing and relaxing such restrictions can be effective at “flattening” the curve while 
likely minimizing social and economic cost.

Since its first reported case in early December 2019 in Wuhan, Hubei Province, China, the novel Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 disease have reached 184 
countries/regions causing a total of 149,024 deaths, as of this writing. The rate of spread of the virus is substan-
tially higher than that of similar previously reported epidemics such as SARS and  MERS1. Because of this world-
wide and rapid spread, on March 11, 2020, the World Health Organization (WHO) declared the COVID-19 
outbreak a global  pandemic2. The exponential increase in the number of confirmed infectious cases and deaths 
has caused countries all around the world to respond with severe lock-down, quarantining, and social distanc-
ing measures to contain the spread of the disease. For example, northern Italy went into a state of emergency on 
March 8, 2020, imposing a complete lock-down that was expanded to the rest of the country three days  later3. 
Following Italy’s attempts to decrease the contagion rate, Spain enforced a nationwide lock-down on March  164. 
In contrast, the response in the US was significantly slower than those of the aforementioned (and most other 
European) countries, delaying widespread social distancing measures and disease screening initiatives.

Given the exponential growth of virus infections, policy makers face the urgent challenge of determining the 
appropriate response(s). For example, restrictions on population mobility, increased resource investment (e.g., 
personal protective equipment, ventilators, hospital beds in intensive care units), as well as improved COVID-19 
screening can greatly impact the spread of  infection5,]6. Here, fundamental epidemiological  models7, typically 
comprising sets of coupled, nonlinear ordinary differential equations (ODEs), are valuable tools for simulating the 
dynamics of the epidemic and investigating suppression strategies. Several works (e.g., Anastassopoulou et al.8, 
Peng et al.9, Magal and  Webb10) have addressed the development and fitting of such models for the COVID-19 
outbreak using regression techniques. Models were subsequently used to characterize the  infection11,12, predict 
its potential  spread13–15, and/or evaluate mitigation  strategies16,17.

On the other hand, fewer studies have investigated the dynamic optimization, or optimal control, based on 
epidemiological models in relation to the current COVID-19 outbreak. In this context, the aforementioned epi-
demiological models are used to determine the policies (i.e., model inputs), such as the social distancing measures 
and testing rates, that lead to the best outcomes at the population level. Such outcomes include, for example, 
minimizing the peak number of infected people or total number of deaths, while also accounting for constrained 
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resource availability and the extent to which social distancing is feasible. Among works of this type, Djidjou-
Demasse et al.18 investigated the optimal control of a single “intervention” input variable for an ODE model. 
Moore and  Okyere19 formulated a similar problem with additional inputs, including hospitalization rates and 
environmental spraying. Both studies solved the optimal control problem using an iterative forward–backward 
sweep  method20 and assumed the model parameters to be fully known. While optimal control of epidemiologi-
cal models has been well-studied (e.g., Biswas et al.21, Neilan and  Lenhart22), a limiting factor for implementing 
modeling and optimization concepts during early stages of an outbreak is that obtaining accurate estimates of 
key model parameters can be challenging.

In this work, we report a novel and complete dynamic optimization-based approach to the entire epidemio-
logical modeling and outbreak control workflow for the US COVID-19 outbreak. We first formulate a dynamic 
optimization strategy for identifying both the values of time-invariant parameters and the historical trajectories 
of time-varying parameters (i.e., inputs) of an epidemiological model. We then investigate how optimal control 
of the inputs of the same model, which reflect social distancing and testing, relates to infection mitigation strate-
gies. The optimal control problem is cast as a simultaneous dynamic optimization problem (i.e., reformulated as 
an algebraic problem)23, enabling the natural use of deterministic global optimization  technology24. This in turn 
provides solutions that are proven to be globally optimal, whereas iterative schemes such as the  above20 often 
only guarantee global optimality under certain conditions (the term “global” here refers to the notion that the 
best possible disease control policy is identified from a set of “local” solutions that otherwise satisfy optimality 
conditions. “Global” in this context should not be interpreted as “world-wide”). Furthermore, we show how state 
estimation should be used to update important hidden model states (e.g., the number unconfirmed infections) 
to reduce the impact of model inaccuracy. Implementations of the parameter estimation and optimal control 
problems in open-source software are provided freely at https ://githu b.com/Balde a-Group /covid -19.

Results
Mathematical modeling. We consider the compartmental model shown in Fig. 1, which brings a few key 
modifications to the conventional SEIR (susceptible-exposed-infectious-recovered) structure. Importantly, the 
a(t) state is added to account for infected subjects that are not included in the count of confirmed cases, either 
because they are asymptomatic or because of insufficient testing. The virus is thought to be asymptomatic in 
20–40% of  cases25,26 and may be transmitted by asymptomatic  carriers27. We also include a p(t) state, which 
tracks the population that perishes due to the virus.

The modified SEAIR model has six compartments/states: s(t) represents the number of subjects that are 
susceptible to infection, e(t) the number that have been exposed to the virus, a(t) the number that are infected 
but asymptomatic/unconfirmed, i(t) the number with confirmed infections, and r(t) the number that have recov-
ered from infection. The states are assumed to sum to a known total population N, and p(t) can be calculated 
algebraically at all times. Note that N is assumed to be constant. This assumption is suitable since the number of 
deaths is much smaller than the initial population, and thus considering a time-varying total population would 
have little impact on our model at the expense of increased complexity. The model structure is shown in Fig 1.

The SEAIR model is described by the following equations:

(1)
ds(t)

dt
=

−αa(t)

N
s(t)a(t)−

αi(t)

N
s(t)i(t)+ γ r(t)

Figure 1.  Digraph representation of SEAIR model; model inputs and parameters.

https://github.com/Baldea-Group/covid-19
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where αa(t) and αi(t) are the rates of exposure to the virus from the population of asymptomatic/unconfirmed 
and confirmed infected subjects, respectively. These two rates of exposure are defined as time-varying and inde-
pendent model inputs to reflect different measures taken during the course of the pandemic. Specifically, αa(t) 
corresponds to exposure from asymptomatic carriers (a) and reflects social distancing and/or shelter-in-place 
strategies. On the other hand, αi(t) corresponds to exposure from infected subjects (i) and reflects quarantining 
of infected subjects. We also model κ(t) , or the rate at which unconfirmed cases become confirmed, as a time-
dependent input to reflect varying levels of screening and testing.

The other parameters are assumed to be constant over the time horizons considered herein. t−1
latent is the 

inverse of the latent period of the virus, or the time before an exposed subject becomes infectious. We assume 
a value of t−1

latent = 0.5 days−1 based on Peng et al.9 The parameter ρ describes the infectious period for subjects 
with unconfirmed infections, for which we assume a value of ρ = 0.1 days−1 , based on Rocklöv et al.28 The rates 
at which subjects with confirmed infections recover and perish are described by β and µ , respectively. Finally, γ 
describes the rate at which recovered subjects become susceptible to the disease again. Since the immunity period 
for the virus is unknown, we assume a value of γ = 0 . While these parameters largely describe the virus itself, 
they may change over longer time horizons, e.g., as new treatments are developed. A potential future avenue 
of research is to consider parameters β and γ to be time-varying, to reflect decision-making regarding budget 
allocation for medical supplies and equipment, as well as health care capacity expansion over time.

In summary, the SEAIR model (1)–(6) has three time-varying inputs ( αa(t) , αi(t) , and κ(t) ), three param-
eters ( t−1

latent , ρ , and γ ) whose values are based on available literature, and two parameters whose values must 
be estimated ( β and µ ). Note that since e(t) and a(t) are unmeasured, their magnitudes relative to the infected 
population i are effectively set by (the bounds on) κ . As the prevalence of asymptomatic infection is established 
(e.g., Bendavid et al.29 estimate up to 4% prevalence in Santa Clara County using serological testing) the magni-
tudes of e and a may be adjusted by scaling κ , and other parameters as relevant.

Parameter estimation results. This work primarily addresses the current COVID-19 situation in the US, 
but the still relatively early stage of the outbreak in the US renders the available data insufficient to fit parameters 
reflective of prevention measures already in place. For this reason, we perform a comparative analysis by solving 
the parameter estimation problem for Italy, Spain, and Germany, where, while the epidemic has not been fully 
contained yet, the daily number of new confirmed cases has been on a steady decline.

Model parameters for the US, Italy, Spain, and Germany. Figure 2 shows the predicted values obtained by solv-
ing the parameter estimation problem and the historical data by country, retrieved by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University (https ://githu b.com/CSSEG ISand Data/COVID 
-19; accessed April 16, 2020). Day 1 of the dataset corresponds to January 22, while day 85 corresponds to April 
16. The solid line in each state trajectory plot shows the mean predicted value. Standard deviations for the pre-
dictions were estimated using bootstrapping, with the time-invariant parameters sampled from a multivariate 
normal distribution. The means and covariances of the estimated parameters for each country are provided in 
the Supplementary Information. Plots corresponding to infected, recovered and perished (left plots in Fig. 2) 
were obtained by simulating (1)–(6) using the estimated trajectories of the time-varying inputs, shown in the 
right-most column of Fig. 2.

Parameter estimation results provide several interesting insights. First we note that the mortality rates, while 
higher for the European countries, are comparable in magnitude for the four countries considered and are similar 
to prior  estimates30. The higher death rates in Italy and Spain are likely explained by demographic factors (e.g., 
age), as well as the medical resources available to treat the infected population. However, the simulated trajecto-
ries of p in Italy and Spain deviate slightly from the historical data, especially around day 80 (Fig. 2), suggesting 
that the death rate µ may be time-varying. While µ can vary in reality due to improved treatment, early detection 
bias, etc., it is difficult to anticipate future changes, and we therefore approximate it as a constant.

From the trajectories of αa , αi , and κ , we observe that social distancing measures (i.e., lower values of αa ) 
were first implemented in Europe, and more recently the US, which agrees with their true chronology. This 
insight is confirmed by the fitted values for e0 , with Italy having the highest value and the US the lowest, which 
is representative of the beginning of the outbreak in each country. In general terms, the identified evolution of 
containment and testing measures follow similar trends for all four countries, which supports that the model 

(2)
de(t)

dt
=

αa(t)

N
s(t)a(t)+

αi(t)

N
s(t)i(t)− t−1

latente(t)

(3)
da(t)

dt
= t−1

latente(t)− κ(t)a(t)− ρa(t)

(4)
di(t)

dt
= κ(t)a(t)− βi(t)− µi(t)

(5)
dr(t)

dt
= ρa(t) + βi(t)− γ r(t)

(6)
dp(t)

dt
= µi(t)

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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structure is correct and can appropriately reflect (see “Methods”) different dynamics of the same underlying 
disease. Further, we expect that the parameters obtained for the US, while being fitted using relatively premature 
information, are likely an adequate representation of the current COVID-19 situation.

State simulations for fitted parameters. For the estimated parameter values as described previously, we simulate 
the results of implementing two different simplistic control policies: (i) continuing with strict social distancing, 
quarantining, and testing, policies that result from continuing to lower the asymptomatic ( αa ) and infected ( αi ) 
exposures shown in Fig. 2; and (ii) a relaxed policy with more lenient measures and reduced testing, in this case 
the values of αa and αi are increased to 0.2 and 0.02, respectively, while κ is decreased to 0.2. The population 
levels resulting from implementing these two policies are shown in Fig. 3, where the numbers of recovered sub-
jects are omitted for the sake of brevity. We additionally show the number of new confirmed cases per day, as it 
is a commonly used metric to illustrate the current spread/containment of the virus. Since the three European 
countries showed very similar trends under the two policies considered, we only compare the results for the US 
to those obtained for Italy. On the one hand, from Fig. 3 it is evident that relaxing current control policies can 
result in an alarming number of infected cases and deaths, particularly in the US. On the other hand, continu-
ing with the strict shelter-in-place measures and maximizing testing can result in earlier and substantially flatter 
pandemic peaks, with significantly lower numbers of casualties. While the latter approach is the most effective 
at preventing further exponential spread of the disease, it is also the most socially and economically disruptive 
policy. In light of this trade-off, we argue that by means of employing optimal control concepts it is possible to 
find effective policies that maintain the number of infected cases below a given threshold, while minimizing the 
extent of social and economic disruption.

Dynamic optimization results. Here, we consider the optimal control of the COVID-19 infection in 
the US using the deterministic SEAIR model (1)–(6) with the mean values of the time-invariant parameters as 
described above. As such, the optimization problem only considers the mean predicted values (e.g., solid lines 
in Figs. 2 and 3). Future work may consider a stochastic optimization approach that, at the expense of increased 
computational effort, leverages information about model uncertainty.

Optimization of future actions. We solve a dynamic optimization problem that minimizes a measure of socio-
economic cost, subject to keeping the peak (max) value of the infected population below a given number ipeak . 
The lower bound of κ(t) is raised to 0.15, from 0.10 in Fig. 1. This change was made because (i) the historical 
value of κ for all countries analyzed quickly jumps to is maximum value 0.3, perhaps reflecting public initia-
tives, and (ii) the [0.15, 0.3] range translates to ρ

ρ+κ
∈ [25%, 40%] , which is reflective of current estimates of the 

asymptomatic  ratio25,26.

Figure 2.  Historical data and model fit for infected (i(t)), recovered (r(t)), and perished (p(t)) subjects (in 
thousands). Solid lines represent the mean of 500 Monte Carlo simulations, shaded areas represent two standard 
deviations from the mean, and circle markers are historical data. The right-most column shows the fitted 
trajectories of the time-varying inputs.
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Figure 4 depicts the solution of this problem for the cases where ipeak = 700,000 subjects and ipeak = 1,400,000 
subjects. The optimization problem was solved for the 100 days following the end of the available dataset ( t0 = 85 , 
tf = 185 ), with the initial condition at t0 computed by simulating days 1–85. Although the optimization problem 
only considers the mean values (solid lines), two standard deviations are shown in the shaded areas to reflect 
parametric model uncertainty for the given inputs, computed using the same bootstrapping approach as above.

Considering the current status of the pandemic in the US, keeping the peak below 700,000 infected subjects 
is very challenging. Note that the minimum feasible value of ipeak corresponds to a peak of 612,493 infected 
subjects. Therefore, maintaining i(t) ≤ 700,000 requires immediately decreasing αa and αi to their lower bounds 
for approximately the next 25 days, during which the exposed population can decrease significantly. After this 
period, αa is relaxed to its upper bound for seven brief periods (Fig. 4, left). However, αi remains at its lower 
bound at all times, reflecting a strict quarantining policy.

This policy reveals that the impact of αi on the infected population size is larger than that of αa . In turn, this 
suggests that quarantining of infected people is more important than social distancing, which mitigates exposure 
to unconfirmed cases. The optimization problem penalizes κ to account for the cost of testing, and κ is decreased 
during periods of decreased αa , suggesting that testing is less important during times of social distancing/lock-
down. Intuitively, when the exposure to asymptomatic subjects is already low due to social distancing, there is 
less benefit to testing asymptomatic subjects (and transferring them to the similarly quarantined infected popula-
tion). On the other hand, κ is increased preemptively for each period of increased αa , suggesting that testing is 
most important in the days leading up to a period of relaxed social distancing. This testing moves asymptomatic 
subjects to the confirmed-infected population, which can remain quarantined.

Figure 4 (right) depicts the solution obtained for a value of ipeak = 1,400,000 people. While αi again remains 
at its lower bound at all times, re-emphasizing the importance of quarantining infected subjects, there are more 
frequent and longer periods of increased αa . In this case, κ remains at its upper bound for most of the control 
horizon. In both cases, the optimization problem does not account for the effect(s) of the control policy after 
100 days, and growth of the infected population near the end of the time horizon may be concerning. This can 

Figure 3.  Simulation of future infected (i), new confirmed cases (κa) , and perished (p) subjects (in thousands) 
for current control policies. Shaded grey area indicates historical data, color solid lines represent the mean of 
500 Monte Carlo simulations, and color shaded area represents two standard deviations form the mean.
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be addressed, e.g., using a moving horizon control strategy, where policy measures are revised periodically, as 
discussed below.

The lower bound used for αi is lower than estimated values for the US for the past (Fig. 4), corresponding to 
a new level of quarantining. Furthermore, the current value of αa , or social distancing, may not be economically 
sustainable over longer periods. To investigate the effect of not achieving these proposed levels, we solve the same 
problem with ipeak = 1,400,000 people, using different lower bounds for the inputs. Figure 5 shows the optimal 

Figure 4.  Optimal control policy to limit peak infections to 700,000 (left) or 1,400,000 (right) in the next 100 
days. Top: population numbers, with two standard deviations shaded. Bottom: containment and testing profiles. 
The shaded grey area indicates past days, which were simulated using historical inputs (not optimized).

Figure 5.  Optimal containment and testing strategies to limit peak infections to 1,000,000 in the next 100 
days for different constraints on αa and αi . Top: αa(t) . Bottom: κ(t) . The shaded grey area indicates the solution 
found using the normal bounds, replicated from Fig. 4 (right).
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input profiles found for the cases where the lower bound of αa is doubled from 0.05 to 0.1 (dotted blue lines), 
and where the lower bound of αi is doubled from 0.01 to 0.02 (solid black lines). When the lower bound of αa is 
doubled (less social distancing is achieved during lock-down periods), the same infected population peak can 
be maintained by increasing the frequency of social distancing periods. However, when the lower bound of αi is 
doubled (less quarantining is achieved), maintaining the same number of peak infections requires social distanc-
ing at almost all times, closely resembling the control policy found for a lower peak (Fig. 4, left). In either case, 
the optimal value of αi remains at its lower bound (either 0.01 or 0.02) at all times and is therefore not shown. 
Periods of social distancing are further increased in both frequency and duration if both bounds are doubled.

Compared to the decreases seen in Fig. 3 for the cases of continued control, the solutions in Fig. 4 seek to 
merely flatten the growth of the infected population. The associated optimal control policies resemble “bang-
bang” control (the inputs are always at the lower or upper bound), which can be expected from a systems-
theoretic point of view for (1)–(6), as the equations are linear functions of the inputs αa , αi , and κ . This result 
supports the strategy proposed by the Imperial College COVID-19 Response  Team31, which involves periodic 
suppression measures. Their strategy triggers the start of a social distancing period by when the number of weekly 
ICU cases increases past an “on” threshold, and the end of the period when the same number decreases below 
an “off ” threshold. Figure 4 shows that this type of strategy maintains a low exposed population, and therefore 
flattens the growth of the infected population while still allowing periods of social mobility.

Revisiting past actions. We examine the same optimal control problem with a time horizon starting from day 50 
(i.e., covering 35 days in the past). Rolling the time horizon of the optimization problem backwards to t0 = 50 , 
allows us to investigate the optimal inputs for days 50–85, corresponding roughly to the latter half of March 
and the first half of April. Figure 6 (left) depicts the solution obtained for a value of ipeak = 700, 000 people. The 
initial condition at t0 = 50 was computed by simulating days 1–50. The minimum historical values for αa and αi 
were used as their respective lower bounds for days 50–85, such that the optimal control policy for days 50–85 
only involves an extent of quarantining and social distancing already experienced by the general population.

In this case, maintaining the number of infected subjects below 700,000 appears easy. The minimum feasi-
ble peak of infected subjects is 16,543, compared to 612,493 when the optimization starts at day 85. Therefore, 
maintaining i(t) ≤ 700, 000 can involve extended periods of no social distancing αa = 0.5 . Similar to the result in 
Fig. 4 (right), testing and quarantine are important in this scenario: κ remains at its upper bound and αi its lower 
bound. The solution for an order-of-magnitude lower minimum peak, corresponding to 70,000 infected subjects 
is shown in Fig. 6 (right). The optimal control policy for this scenario involves more frequent periods of social 

Figure 6.  Optimal control policy to limit peak infections to 700,000 (left) or 70,000 (right) in the past 35 days 
and next 100 days. Top: population numbers, with two standard deviations shaded. Bottom: containment and 
testing profiles. The shaded grey area indicates past days, for which the true historical inputs and outputs are 
shown as dashed lines and the optimized are shown as solid lines.
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distancing. Early implementation of testing and quarantining strategies clearly has an enormous effect, manifest 
in the large difference between the historical inputs (dashed) and optimal inputs (solid) in days 50–85 of Fig. 6.

Estimation of hidden states and moving horizon control. The SEAIR model (1)–(6) includes two hidden states, 
e(t) and a(t), which are not measured in practice (note that widespread serological  testing29 may eventually 
reveal the true levels of the asymptomatic population a). Nevertheless, solutions for the optimal control problem 
based on (1)–(6) are highly dependent on the values of e(t) and a(t), and therefore the initial conditions e(t0) 
and a(t0) . Fig. 7 (left) depicts the optimal control policies for ipeak = 1, 400, 000 people over the next 100 days 
(similar to Fig. 4, right), where e(t0) and a(t0) are now underestimated by a factor of three. This is a practically 
motivated scenario, as the number of asymptomatic cases is considered largely  uncertain6,32. The dashed-dotted 
lines show the state profiles predicted by the optimization problem (with incorrect initial conditions), while the 
solid lines show their true evolution for the given inputs.

The error in the hidden states e(t) and a(t) causes the predicted and actual profiles to diverge over time. By 
the end of the 100 days, there are 1.90 million actual infected subjects, almost 40% greater than the predicted 
1.40 million. To account for discrepancies between the modeled and true systems, the optimal control inputs 
should be periodically updated. We propose to achieve this with a moving horizon decision-making strategy: after 
a given length of time, the dynamic optimization problem is re-solved, setting the measured values of the states 
as their initial conditions. The values of the un-measured, hidden states can be estimated using state estimation 
techniques, such as the Kalman filter (the optimal linear estimator) or its nonlinear extensions.

We consider a relatively long time span of 25 days before each revision of policy decisions (and re-optimi-
zation), as planned suppression strategies likely cannot be altered quickly. Figure 7 (right) shows the optimal 
trajectories found for the same problem (initial conditions for e and a underestimated by a factor of three) using 
the moving horizon strategy. The vertical dotted lines indicate times when the optimization problem was resolved. 
Values of the hidden states were estimated daily with the (discrete) unscented Kalman  filter33, implemented using 
the pykalman library (https ://pykal man.githu b.io/; Accessed April 7, 2020). Measurements for state estimation 
and control updates were simulated by adding independent, normally distributed noise to the true state values. 
A standard deviation of 5,000 people was used for the measured states (i, r, and p) based on the size of residuals 
during parameter estimation.

The predicted values (dash-dotted lines in Fig. 7) are first updated when the optimization problem is re-solved 
at t = 110 days. The solutions to the re-optimization problems are shown in the Supplementary Information. The 

Figure 7.  Optimal moving horizon control policy (right) to limit peak infections to 1,400,000, with e and a 
underestimated by a factor of three at t = 74 , and comparison to the same situation without a moving horizon 
strategy (left). Top: predicted (dash-dotted) and true (solid) population numbers. Bottom: containment and 
testing profiles. The shaded grey area indicates past days, which were simulated using historical inputs (not 
optimized). The policies are updated every 25 days with daily state estimation.

https://pykalman.github.io/
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effect of this moving horizon strategy is quite significant, in comparison to the optimal policy shown in Fig. 7 
(left). Periods of social distancing are quickly increased after day 110 to account for the larger-than-expected 
increase in infected population. Testing levels, reflected by κ , are also updated accordingly. The moving horizon 
approach exhibits three clear benefits:

• Errors between the model predictions and reality are minimized by incorporating new measurements as they 
become available

• The infected population does not grow exponentially at the end of the time horizon, as is the case when 
considering only a single time horizon.

• The control policies can be computed indefinitely into the future by shifting the time window forward in 
time, while the problem size remains tractable (only 100 days are considered during optimization).

The effect of state estimation is most notable in the first moving horizon window, between days 85–110. Here, 
while the values predicted by the optimization problem are consistently under-predicted, the estimated values 
approach the (unknown) true values as daily measurements are added. The estimated values over time are shown 
in the Supplementary Information. The new solution of the optimization problem at day 110 uses the popula-
tion levels measured/estimated based on new data as initial conditions, and therefore predicts more accurate 
trajectories.

Discussion
This work investigated dynamic optimization strategies to characterize and control the US COVID-19 outbreak, 
by minimizing the socioeconomic cost associated with containment strategies and testing. The results provide 
several overarching conclusions.

The quarantining of infected subjects is the most important of the considered mitigation strategies and 
should be maximized at all times. Additionally, periods of social distancing/lock-down help to flatten the peak 
by preventing exposure from asymptomatic and unconfirmed cases. Screening and testing for the disease are key 
immediately preceding periods of relaxed social distancing, in order to minimize the number of unconfirmed 
infections during periods of social mobility. Early action has much larger effects than later interventions, even as 
the later interventions are more drastic. Optimal policies are highly dependent on estimates of “hidden states,” 
i.e., the asymptomatic and unconfirmed cases. Moving horizon (periodically updated) policies and state estima-
tion should be used to mitigate inaccuracies in the model and counts of asymptomatic/unconfirmed cases, by 
accounting for new data as they becomes available.

The “on-off ” policies identified as optimal are characteristic of the class of problems considered (linear 
objective function and input-affine nonlinear model). Further, these policies are likely the easiest to implement 
in practical scenarios and to convey to the general population (as opposed to a policy where the social distanc-
ing parameters would take values between their upper and lower bounds). Their implementation would simply 
alternate between the strictest possible limitations, followed by periods of relative freedom of movement. The 
frequency of these periods may be restricted, e.g., by including rate-of-change constraints in the optimization 
problem, to account for the ability of a country or local authority to intermittently enforce social distancing 
policies.

The model used in this work does not include population influx to and/or outflux from the given system. 
Therefore, the optimal containment and testing strategies found do not account for new cases that may enter 
from outside the US. We also assumed that the recovery and death rates for the virus are constant and equal to 
their historical values for the next 100 days. Thus the results do not account for the possibility of, e.g., improved 
medical treatments, vaccine development, and/or viral mutation. Similarly, the model does not account for pos-
sible surveillance/detection bias in the historical data (e.g., increased likelihood of testing for subjects with more 
severe symptoms). The impacts of these assumptions are topics for future work. Also, while  Sameni16 determined 
fixed points and did linear stability and observability analyses for a similarly-structured SEIR model with time-
invariant parameters, another topic for future work is the extension of this mathematical analysis to the SEAIR 
model with time-dependent parameters used here.

Methods
Parameter estimation. We follow nonlinear (least-squares) regression for parameter estimation, which 
can be cast as an optimization problem, where the objective is to find the parameter values that minimize the 
mean squared error (MSE) between the predicted states and their measured values. The measured values corre-
spond to data retrieved by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University 
(https ://githu b.com/CSSEG ISand Data/COVID -19; accessed April 16, 2020) and are provided in the Supplemen-
tary Information for several countries. The data consist of the total number of infected ( ̂ij ), recovered ( ̂rj ) and 
dead ( ̂pj ) reported subjects, where j represents each day during the time period from January 22 to April 16, 
where the index j represents the time period each value was recorded. The MSE is given by:

We note that when solving the parameter estimation problem, the contribution of the term ρa(t) to the recov-
ered state r(t), is removed from the system (1)–(6). This is because the data obtained only accounts for those 

(7)L0 =

N∑
j=0

(i(t = j)− îj)
2 + (r(t = j)− r̂j)

2 + (p(t = j)− p̂j)
2

https://github.com/CSSEGISandData/COVID-19
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recovered that were confirmed to have the disease, meaning the only contribution to the observed recovered is 
the term βi(t).

The parameters with values/trajectories to estimate are αa(t) , αi(t) , κ(t) , β , and µ . Furthermore, we must esti-
mate the initial condition of the unreported states e and a at t = 0 . We assume that there are initially no asymp-
tomatic infections. The “seed” of the outbreak is therefore the initial number of exposed subjects e0 = e(t = 0) , 
which we include as a parameter in the least-squares problem. We include bounds on the possible parameter 
values, based on values reported for similar models fitted to data from other  regions9. Note that, while κ reflects 
the level of testing, it also affects the predicted asymptomatic ratio, which cannot be controlled. Therefore, tighter 
bounds should be used for κ than for αa and αi . The estimated parameters and their bounds are summarized in 
Fig. 1.

To prevent over-fitting the available data, we restrict the time-varying inputs ( αa , αi , and κ ) to be piece-wise 
constant over five-day intervals. These constraints reflect the fact that policies implemented have significant 
time delays in steering the states towards the desired values, and therefore should not and practically cannot be 
manipulated too frequently before their effect is observed on the population. Additionally, we constrain αa(t) and 
αi(t) to be monotonically decreasing over time, reflecting the enforcement of increasingly stricter disease control 
measures. Similarly, κ(t) was constrained to be monotonically increasing over time to account for increased 
COVID-19 screening availability.

To easily interface with raw data sources, the least-squares regression problem was implemented in Python 
using the Pyomo modeling and optimization  package34. We discretized the dynamical system (1)–(6) with respect 
to the time domain using orthogonal collocation on finite  elements23, with one finite element per day. We used 
 IPOPT35 to solve the resulting nonlinear dynamic optimization problem to local optimality. Standard devia-
tions for the time-invariant parameters were approximated by fixing the time-varying inputs to their estimated 
trajectories, and solving a maximum likelihood problem for the time-invariant parameters using the Model 
Validation tool in gPROMS (general PROcess Modeling System) v5.1.4.36 Residuals were assumed independent 
and normally distributed, with variances estimated in the same maximum likelihood problem. The parameter 
covariances (see Supplementary Information) are then computed from the diagonal entries of the Hessian of 
the objective function.

Optimal control. The aim of the optimal control problem is to find the trajectories of “handles” αa(t) , αi(t) 
and κ(t) , that minimize (or maximize) the value of a certain objective function. Most response measures for 
the COVID-19 outbreak seek to “flatten” the epidemic curve, that is, to contain the growth rate of the number 
of infected subjects via a combination of social distancing and testing. Clearly, social distancing and isolation/
quarantining carry significant social and economic costs. We thus formulate the optimal control problem as a 
dynamic optimization problem, aiming to minimize a measure of social and economic cost subject to ensuring 
that the maximum number of infected subjects remains under a given peak value, ipeak . The optimization prob-
lem is expressed mathematically as:

where C(t) is the cost function, and �κ is the relative cost of testing (increasing κ ). Testing costs are assumed to 
be relatively small in comparison to isolation measures, and we selected �κ = 0.1 . While the current cost func-
tion equally penalizes decreases in αa and αi , an additional weighting factor could be introduced to distinguish 
between the socioeconomic costs of social distancing and quarantining.

The solution to (8) can provide control policies over the full time horizon [t0, tf ] as in the case of the initial 
studies presented in this work. Alternatively, the policies can be updated after a shorter horizon (before tf  is 
reached), as in the case of the moving horizon approach. In the latter case, the time window considered, [t0, tf ] 
is shifted forward at a pre-determined time interval. Note that tf  is typically longer than the frequency at which 
the optimization problem is recomputed, and only the solution for the first time step(s) is implemented. For 
example, the moving horizon scenario presented here is solved with tf = 100 days, but with policies updated 
after each 25-day period.

While the problem (8) identifies the minimum societal cost required to achieve a certain peak value of infec-
tions, a related, but different, problem could be formulated by minimizing ipeak subject to an upper bound on C(t), 
i.e., finding the lowest achievable peak for a given total societal cost. For this study we investigate the relation-
ship between C and ipeak by solving (8) for varying values of ipeak , provided in the Supplementary Information.

The optimization problem (8) was again solved by discretization of the time domain using orthogonal col-
location, with one finite element per day. To report the best possible solutions, the resulting algebraic optimiza-
tion problem was implemented in GAMS and solved using the commercial global optimization solver BARON 
v18.5.837. Problems were solved to a 0.1% optimality gap (i.e., the reported solution is proven to have an objective 
function value within 0.1% of that of the best possible solution). We additionally provide an implementation 

(8)

min
αa(t),αi(t),κ(t)

∫ tf

t0

C(t)dt

s.t. SEAIR model (1)-(6)

max
t

(i(t)) ≤ ipeak

C(t) = −αa(t)− αi(t)+ �κκ(t)

αa(t) ∈ [0.05, 0.5]

αi(t) ∈ [0.01, 0.3]

κ(t) ∈ [0.15, 0.3]
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of the same problem using open-source tools  (Pyomo34 and  IPOPT35), which can be used to solve (8) to local 
optimality.

Data availability
Models are available at https ://githu b.com/Balde a-Group /covid -19.
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