Anticoagulation in Long Term Care

Prophylaxis of VTE
Treatment of VTE
Long-term oral A/C
Bridging therapy

Anticoagulation in Long Term Care

- Simple
 - No monitoring
 - No IV
 - Oral (monitoring)
 - SC (once or twice daily)

Anticoagulation in Long Term Care

Special Considerations

- Elderly
- Renal insufficiency
- Comorbid conditions
- Multiple drugs

Prophylaxis of VTE

- Acute medical illness
- CVA
- Post orthopaedic surgery
- Post cancer surgery
- Spinal cord injury

Treatment of VTE

Acute DVT
Acute PE
Secondary prophylaxis

Long – term oral anticoagulants

- Atrial fibrillation
- Heart valve replacement
- Post-MI
- VTE

Venous Thromboembolism

- Third most common vascular disease
- PE leading preventable cause of death
- 200,000 cases of PE annually in USA

Venous Thromboembolism Deep vein thrombosis

Pulmonary embolism

Complications of Deep Vein Thrombosis

Permanent vascular damage

- Post-phlebitic syndrome
- Pulmonary embolism (PE)
- Pulmonary hypertension

Venous Thromboembolism

Secondary

Surgery
medical

Idiopathic

Fatal Pulmonary Embolism

Classification of DVT risk

0

- Low risk Minor surgery Age <40 No other risk factors
- Moderate risk Major surgery Age >40 No other risk factors
- High risk Major surgery Age >40 MI Additional risk factors

Highest risk Major surgery Age >40 **History of VTE Hip fracture THR or TKR CVA Spinal cord injury** Trauma Malignancy Congenital hypercoagulability

VTE, venous thromboembolism; THR, total hip replacement; TKR, total knee replacement; MI, myocardial infarction; CVA, cerebrovascular accident

Chest 1998;114:531S-60S

Frequency of VTE/PE according to risk level

Events	Low risk (%)	Moderate risk (%)	High risk (%)	Very high risk (%)
Calf vein thrombosis	2.0	10-20	20-40	40-80
Proximal vei thrombosis	n 0.4	2.4	4.8	10-20
Clinical PE	0.2	1-2	2-4	4-10
Fatal PE	0.002	0.1-0.4	0.4-1.0	1-5

PE, pulmonary embolism

Chest 1998;114:531S-60S

Methods of DVT prophylaxis

- Unfractionated heparin (UFH)
- Oral anticoagulants (warfarin)
- Dextran
- Antiplatelet therapy
- Mechanical compression and early ambulation
- Low-molecular-weight heparins (LMWHs)

Heparin

- Venous thromboembolism
 - prophylaxis
 - treatment
- Ischaemic heart disease
 - unstable angina
 - acute MI
 - post-thrombolysis
- Embolic stroke
- Extracorporeal circulation
- Haemodialysis
- Peripheral arterial disease

New Anticoagulants

- Low Molecular Weight Heparins
- Low Molecular Weight Heparinoids
- Parenteral Direct Thrombin Inhibitors
- Oral Direct Thrombin Inhibitors
- Pentasaccharides

Schematic Molecular-Weight Distribution

15.000

0,000

Tel

2,000 5,000

Molecular[,] Weight

rin

30,000

25,000

Low-molecular-weight heparin (LMWH)

	Median molecular weight	Anti-Xa IU/mg	Anti-Ila IU/mg	Xa/IIa
Enoxaparin	4800	104	32	3.3
Dalteparin	5000	122	60	2.0
Nadroparin	4500	94	31	3.0
Tinzaparin	4500	90	50	1.8
Clivarine	3900	130	40	3.3

Low-Molecular-Weight Heparins

Potential Advantages:

- Lack of binding to plasma proteins and endothelium
- Good bioavailability
- Stable dose response
- Long half-life
- Resistance does not develop

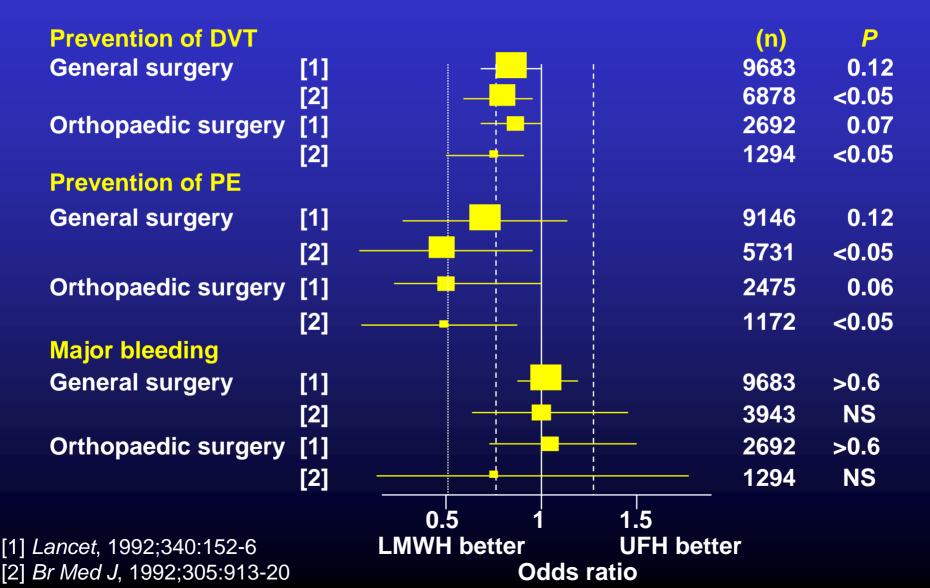
Frequency of DVT without prophylaxis

Type of surgery DVT incidence Overall incidence in general surgery 19-29% [1] Major abdominal surgery (over age 40) malignancy 30-35% [2] 25-29% [2] benign disease Gynaecological surgery malignancy 22% [3] 14% [3] benign disease **Urological surgery** retropubic prostatectomy 30-35% [2] transurethral prostatectomy 10-12% [2]

1. Clagett et al. Ann Surg 1988; 2. Kakkar. Semin Hematol 1997;

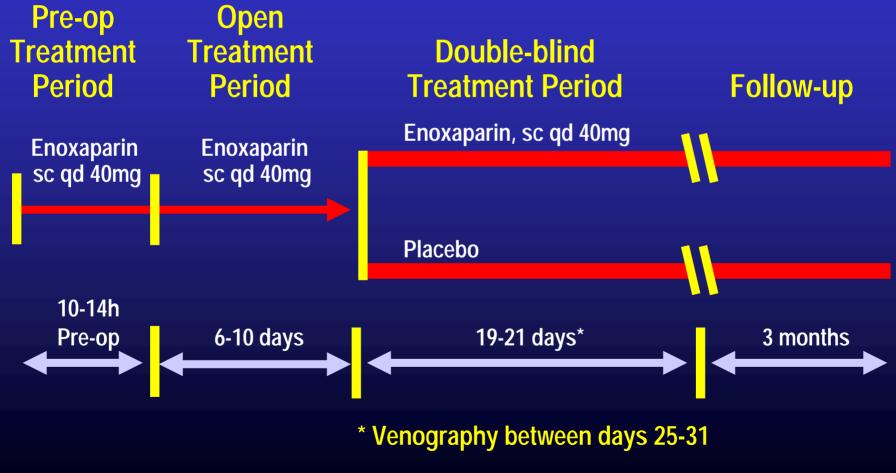
3. Nicolaides et al. Int Angiol 1997.

Reduction in fatal pulmonary embolism and venous thrombosis by perioperative administration of subcutaneous heparin

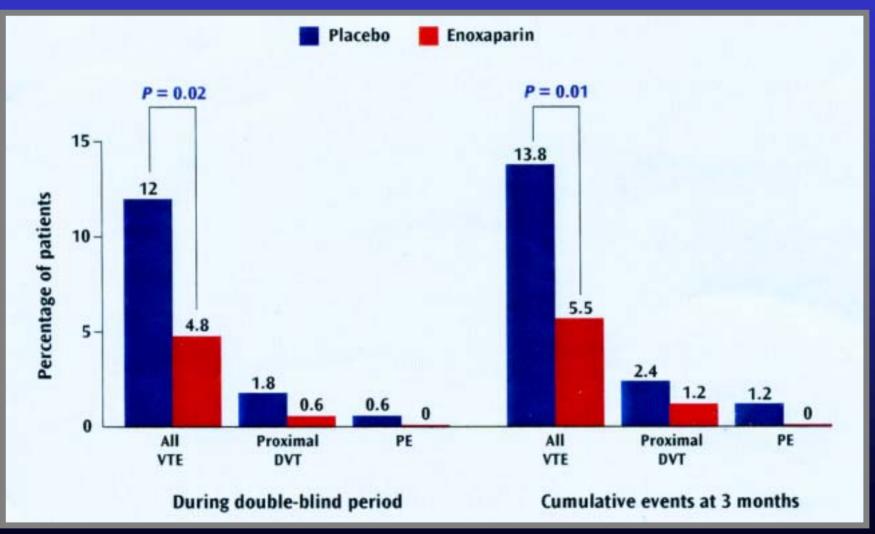

Collins et al. New England Journal of Medicine, 318 (18) 1162-1173 1988

68% reduction in DVT following surgery

• 67% reduction in PE following surgery


21% reduction in total mortality (p < 0.02)

LMWH vs UFH for VTE prophylaxis


ENOXACAN II Study Design

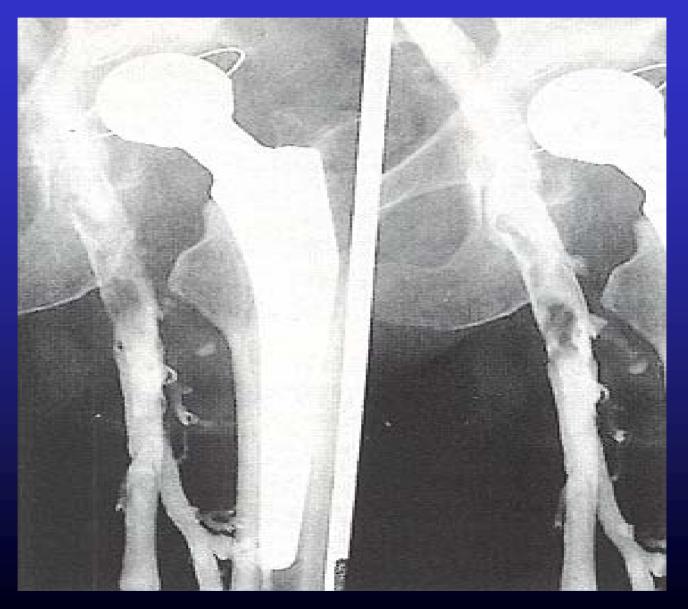
332 Patients undergoing abdominal or pelvic surgery for cancer

Bergqvist D, et al. N Engl J Med 2002;346:975-980.

ENOXACAN II Results

Bergqvist D, et al. N Engl J Med 2002;346:975-980.

ENOXACAN II Conclusions


- Prolonged post-operative prophylaxis with enoxaparin significantly reduced VTE incidence by 60%
- Number needed to treat to avoid one VTE is 14
- Benefit maintained at 3 months

Bergqvist D, et al. N Engl J Med 2002;346:975-980.

General Surgery

RISK CATEGORY	RECOMMENDATION	LEVEL
Low risk	Early ambulation	C1
Moderate risk	LDUH, LMWH, IPC, ES	A1
High risk	LDUH or Higher dose LMWH (40mg/day)	A1 A1
	or IPC if high risk of bleeding	A1
Very high risk	LDUH or higher dose LMWH combined with IPC or warfarin (INR 2.0-3.0)	B1

Deep Vein Thrombosis

Major Orthopaedic Surgery Increasing numbers - currently 2.2 million procedures per year

- Marked growth in the number of major orthopedic surgery procedures:
 - Technical advances
 - Patient aging
- Age is NOT a contraindication to surgery
- Cultural differences exist in patient management
- Despite major advances in patient care, the risk of VTE remains high.

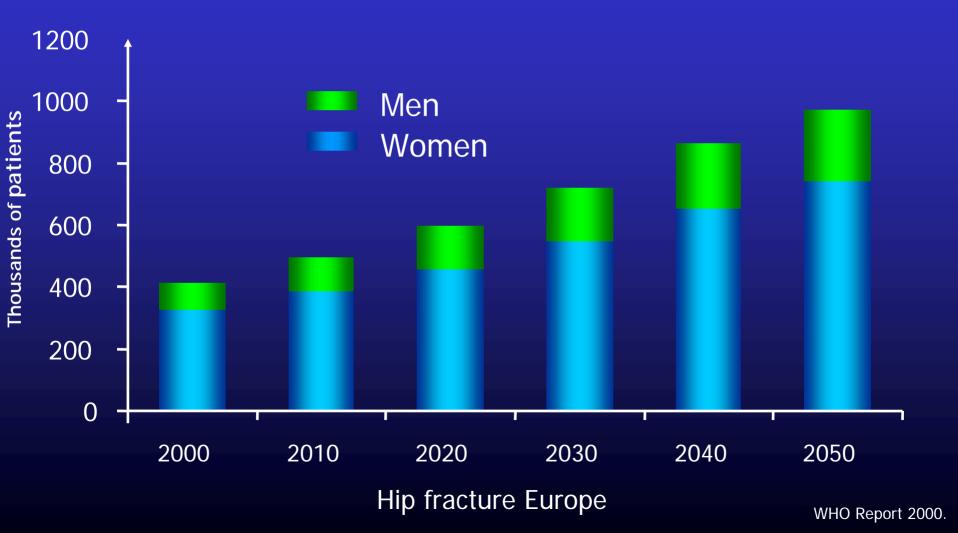
Frequency of VTE in orthopaedic patients no prophylaxis

	DVT	Prox VT	PE	Fatal PE
	(%)	(%)	(%)	(%)
THR	45–55	25–35	7–30	3–6
TKR	40–85	9–20	2–7	0.5
Hip #	35–60	15–35	4–24	4–13
Leg #	60–80			
Trauma	20–65		2–22	
Arthroscopy	18			

Clagett et al. Chest 1995; Lassen et al. Orthopedics 1997.

Geerts et al. N Engl J Med 1996 Demers et al. Arch Int Med 1998.

Prevention of Venous Thromboembolism



Geerts et al, Chest 2001; 119:132

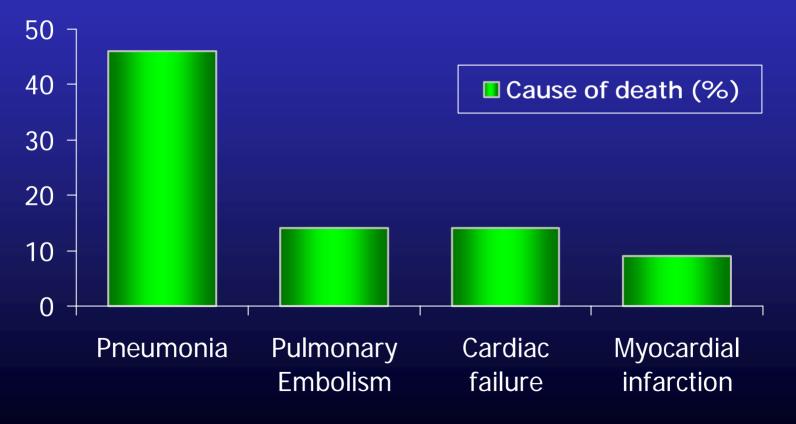
Total Hip Replacement

Regimens	Trials	Patients	DVT Prevalence% 95% Cl	RRR%	Prox DVT Prevalence% 95% Cl	RRR%
Control	12	626	54.2 (50-58)		26.6 (23-31)	
Comp Stock	. 4	290	41.7 (36-48)	23	25.5 (21-31)	4
Aspirin	6	473	40.2 (35-45)	26	11.4 (8-16)	57
LDH	11	1016	30.1 (27-33)	45	19.3 (17-22)	27
Warfarin	13	1828	21.1 (20-24)	59	5.2 (4-6)	80
IPC	7	423	20.3 (17-24)	63	13.7 (11-17)	48
Hirudin	3	1172	16.3 (14-19)	70	4.1 (3-5)	85
LMWH	30	6216	16.1 (15-17)	70	5.9 (5-7)	78
Danaparoid	3	441	15.6 (12-19)	71	4.1 (2-6)	85
Adjusted He	р4	293	14.0 (10-19)	74	10.2 (7-14)	62

Hip fracture: An increasing problem

Hip Fracture surgery: A common and increasingly frequent condition

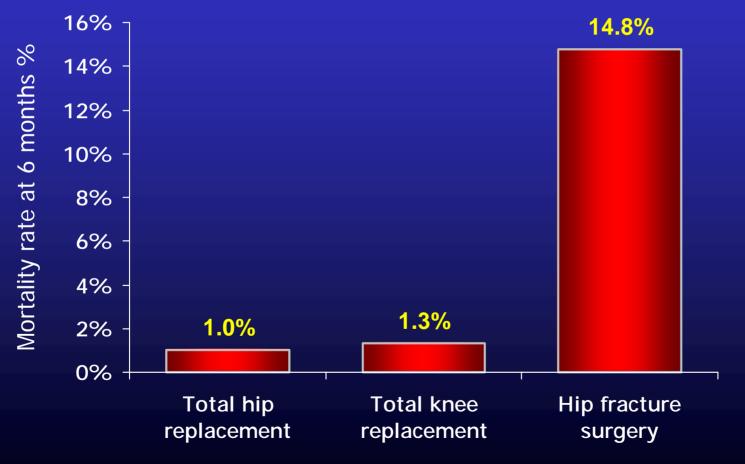
- By 2050, numbers will increase 3 fold from 1.7 million to 6.3 million
- Unprecedented increases will occur in developing countries over next 50 years
- Life time risk of fracture will rise to an incredible 35% for women, 17% of men


A Global Health Problem

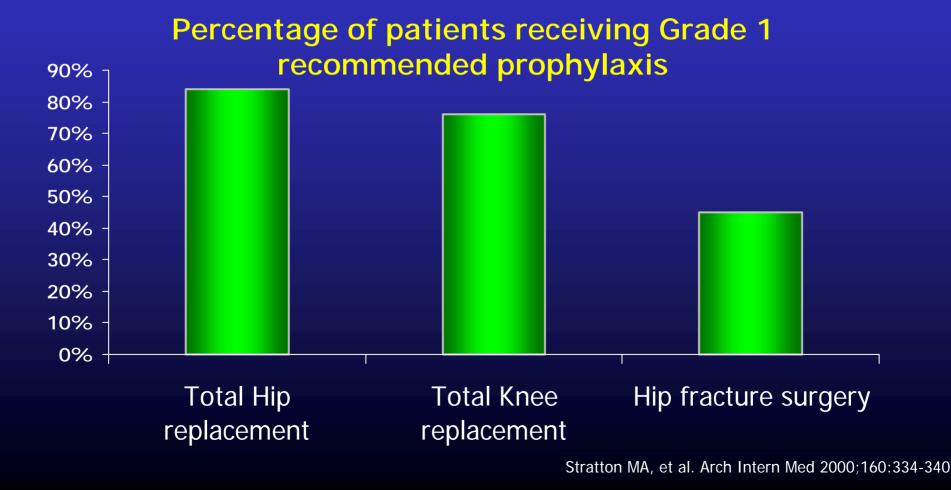
Hip Fracture Surgery: The highest risk of VTE Rate of VTE without prophylaxis				
	% DVT	% PE rate (range)		
	rate	Any PE	Fatal PE	
Total hip replacement	45–57	0.7–30	0.1–0.4	
Total knee replacement	40–84	1.8–7.0	0.2–0.7	
Hip fracture	36–60	4.3–24	3.6–12.9	

Geerts WH, et al. Chest 2001;119:132S-175S

Pulmonary Embolism A leading cause of mortality following hip fracture surgery


Primary causes of death in patients undergoing hip fracture surgery

Perez et al. Injury 1995;26:237-40.


Mortality following hip fracture

887 patients undergoing major orthopaedic surgery

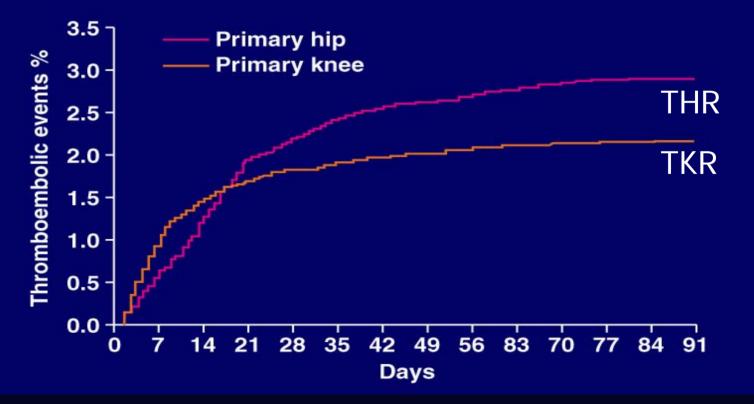
Frostick SP. Haemost 2000;30(Suppl 2):84-7.

Hip fracture Surgery: 50% of patients don't receive adequate prophylaxis

Guidelines for Antithrombotic Therapy Major Orthopaedic Surgery

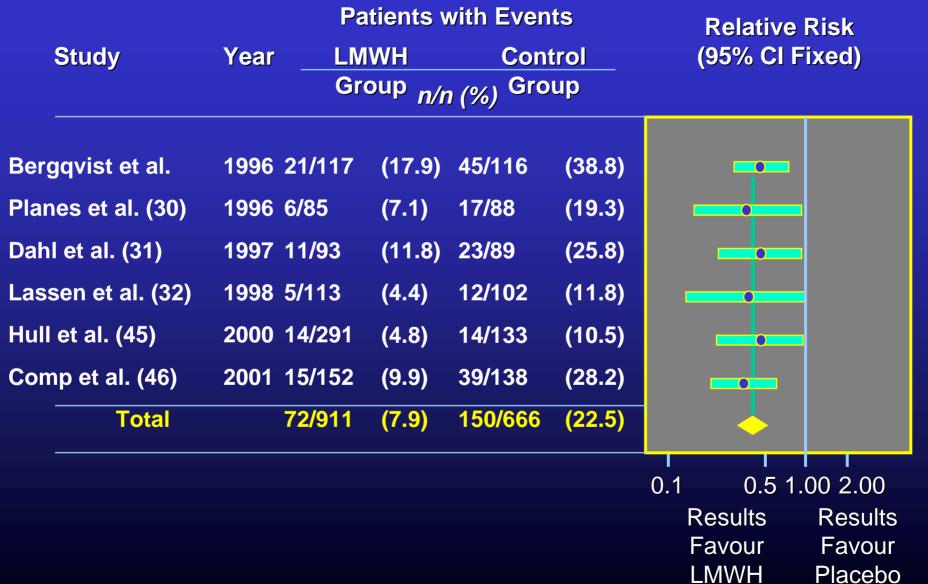
• Elective THR

LMWH (started either 12 hours before or 12-24 hours after surgery) or adjusted dose warfarin INR target 2.5, range 2.0-3.0; started preoperatively or immediately after surgery). *Grade 1A.* Adjusted-dose heparin started preoperatively is an acceptable alternative. *Grade 2A*

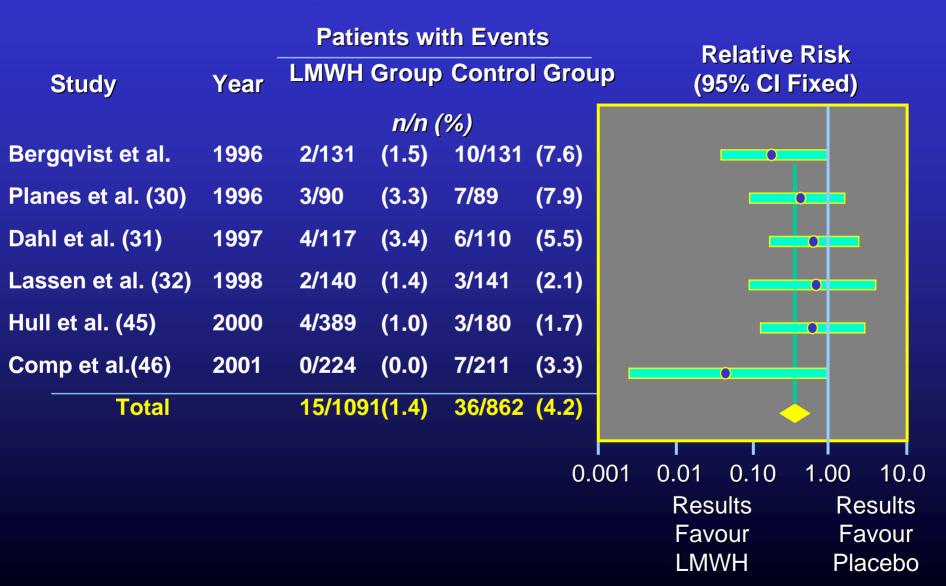

- Elective TKR LMWH or adjusted-dose warfarin. Grade 1A. IPC is an alternative option. Grade 1B
- Hip fracture LMWH or adjusted-dose warfarin. Grade 1B

Guidelines for Antithrombotic Therapy Major Orthopaedic Surgery

- Anticoagulant prophylaxis should be continued for at least 7-10 days.
 Grade 1A
- Extended out-of-hospital LMWH prophylaxis is recommended for high-risk patients. Grade 2A


VTE events post orthopedic surgery: 2/3 occur beyond hospital discharge

VTE events occurring following THR or TKR



White RH, et al. Arch Intern Med1998;158:1525–31.

Relative Risk for All Deep Venous Thrombosis During the Out-of-hospital Time Interval

Relative Risk for Symptomatic Venous Thromboembolism During the Out-of-Hospital Time Interval

Venous Thromboembolism

Deep vein thrombosis

Pulmonary embolism

Guidelines for Antithrombotic Therapy Treatment of Venous Thromboembolism ACCP Chest 2001

Suspected VT

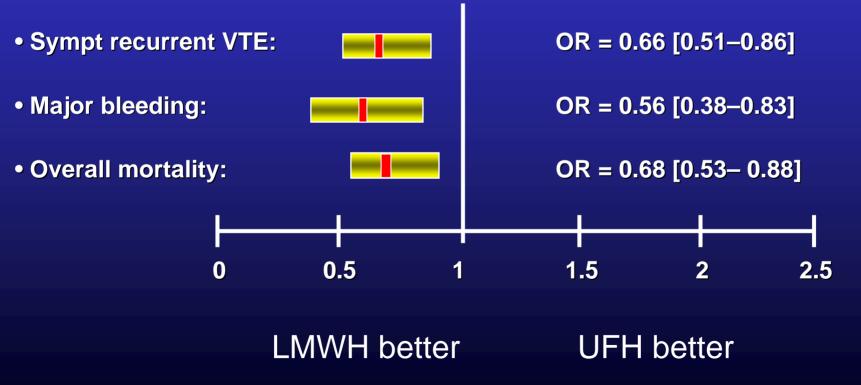
SC LMWH or IV heparin bolus (5000u)

Confirm diagnosis

Confirmed VTE

Continue LMWH or UFH for 5 days

Monitor UFH with APTT and adjust dose


Start warfarin 5mg, target INR 2.5 (2.0-3.0)

Overlap minimum 4-5 days and until INR >2.0 for 2 days

Daily platelet count with UFH; x 1 for LMWH

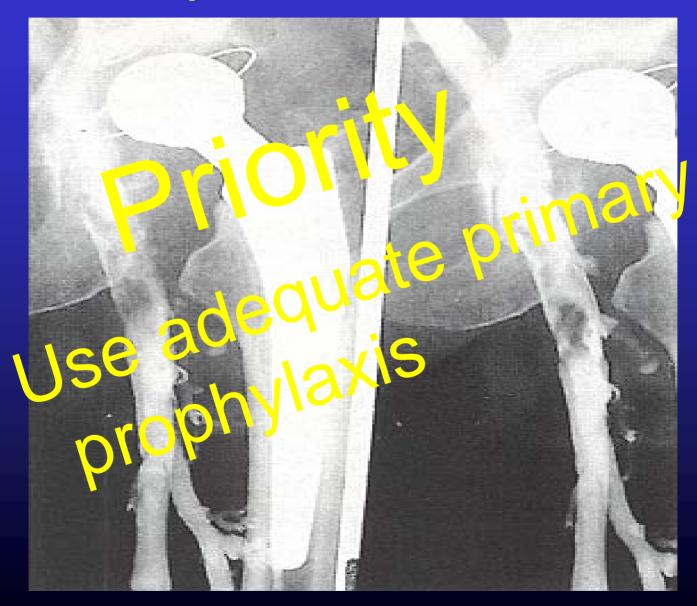
LMWH at Least as Effective and Safe as UFH

Treatment of VTE : Advantages of LMWH

- Efficacy: better than UFH
- Safety: safer than UFH
- Mortality: perhaps a mortality benefit
- Patient satisfaction: outpatient treatment
- Clinical utility: once-a-day injections
- Cost savings: substantial

Guidelines for Antithrombotic Therapy Long-Term Anticoagulation

- All patients: Continue oral anticoagulation for at least 3 months at target INR of 2.5 (range 2.0-3.0). (This does not apply to patients with isolated calf-vein thrombosis). *Grade 1A*
- Oral anticoagulation contraindicated or inconvenient: LMWH or adjusted-dose s.c. heparin in therapeutic doses. *Grade 1A*


Guidelines for Antithrombotic Therapy Long-Term Anticoagulation in VTE

- Patients with reversible or time-limited risk factors: treat for at least 3 months. Grade 1A
- Patients with a first episode of idiopathic VTE: treat for at least 6 months. Grade 1A
- Patients with recurrent idiopathic VTE or a continuing risk factor such as cancer, antithrombin deficiency, or anticardiolipin syndrome: treat for at least 12 months. Grade 1C
- Patients with protein C or S deficiency, multiple thrombophilic conditions, homocysteinemia, or factor V Leiden: treat for at least 6 months. Grade 1C

Guidelines for Antithrombotic Therapy Long-Term Anticoagulation

- Symptomatic isolated calf-vein thrombosis: treat for at least 6-12 weeks. Grade 1A
- Alternatively, serial non-invasive studies over the next 10-14 days to assess for proximal extension of thrombus. *Grade 1C*

Deep Vein Thrombosis

Atrial Fibrillation: Antithrombotic Therapy Laupacis et al, Chest 1998; 114 (5):579-589

- Oral Anticoagulants vs Aspirin
- Efficacy vs safety
- Risk stratification
 - -Major
 - -Intermediate
 - -Low

Atrial Fibrillation: Risk Factors for Stroke

Laupacis et al, Chest 1998; 114 (5):579-589

High Risk

- Age >75 years
- Prior TIA, stroke or systemic embolism
- Hypertension or history of hypertension
- Poor LV function (clinical or 2-D echo)
- Rheumatic mitral valve disease
- Heart valve replacement

Atrial Fibrillation: Risk Factors for Stroke

Laupacis et al, Chest 1998; 114 (5):579-589

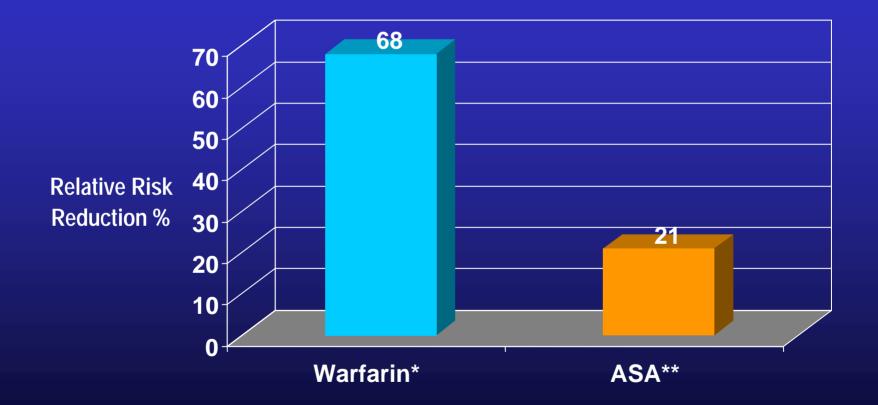
Intermediate Risk

-Age 65-75 years

– Diabetes

-CAD

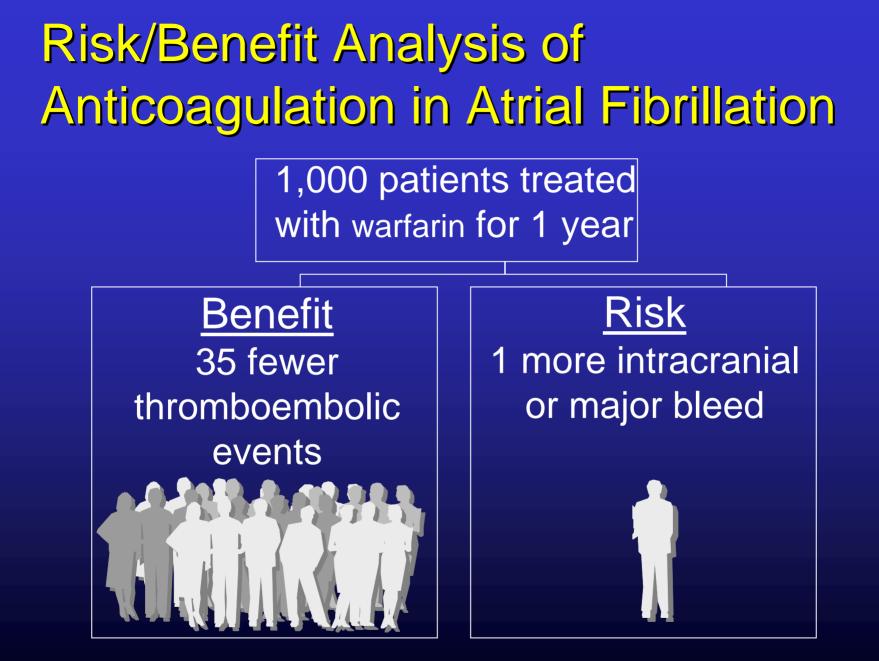
-Thyrotoxicosis


Atrial Fibrillation: Risk Factors for Stroke Laupacis et al, Chest; 114 (5):579-589

Low Risk

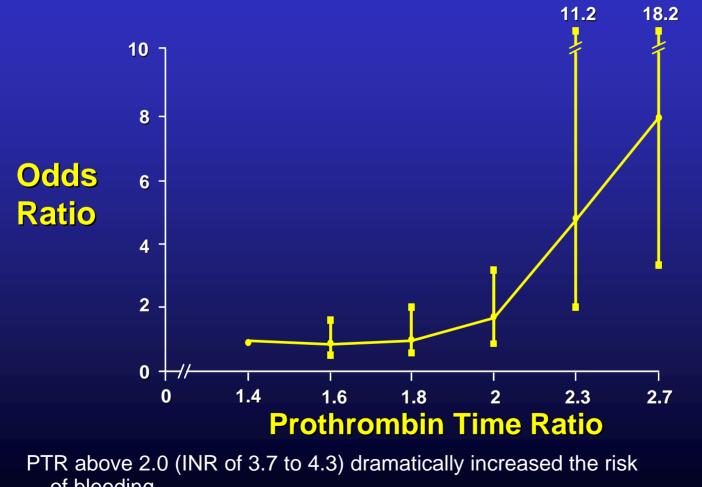
-Age <65 years

-No cardiac abnormality


Stroke Relative Risk Reduction in Atrial Fibrillation Patients

*Based on AFASAK, BAATAF, CAFA, SPAFI, SPINAF (vs control)

** Based on AFASAK, SPAFI, EAFT (vs placebo)


Adapted from AFI. Arch Intern Med 1994;154:1449-1457 & 1997;157:1237-1240

Summary of ACCP Recommendations in Atrial Fibrillation


Age	Risk Factors	Recommendation
<65 years	Absent Present	ASA Warfarin (Target INR 2.5; range 2.0-3.0)
65-75 years	Absent Present	ASA or warfarin Warfarin (Target INR 2.5; range 2.0-3.0)
>75 years	All Patients	Warfarin (Target INR 2.5; range 2.0-3.0)

Odds Ratios of Intracranial Hemorrhage

Adapted from Hylek M, Singer DE. Ann Intern Med 1994;120:897-902.

Odds Ratios for Stroke

Antithrombotic Therapy in Heart Valve Replacement ACCP, 2000

Aortic

- St. Jude bileaflet INR 2.5 (2.0-3.0)
- Carbomedics bileaflet INR 2.5 (2.0-3.0)
- Medtronic Hall tilting disk INR 2.5 (2.0-3.0)
- Atrial fibrillation (any)

INR 3.0 (2.5-3.5)

Antithrombotic Therapy in Heart Valve Replacement

ACCP, 2000

Mitral

- Bileaflet INR 3.0 (2.5-3
- Tilting disk
 IN
- Any (atrial fib)
- Caged ball/disk

INR 3.0 (2.5-3.5) INR 3.0 (2.5-3.5) INR 3.0 (2.5-3.5) INR 3.0 (2.5-3.5) $+ Aspirin \frac{80 mg/day}{80}$

Antithrombotic Therapy in Heart Valve Replacement

ACCP 2000

Mechanical Valves

 Previous embolism INR 3.0 (2.5-3.5) + Aspirin 80mg/day

Bridging Therapy

Bridging Therapy - Options

D/C oral A/C

Reduce INR

D/C oral A/C: IV heparin

• D/C oral A/C: LMWH

Background

- Most clinicians opt for anticoagulant cover with intravenous heparin. However, there are a number of limitations to this approach including a requirement for hospitalization.
 - Costs of hospitalization
 - Limited availability of hospital beds
- Low molecular weight heparins have pharmacological and pharmacokinetic advantages over heparin that allow outpatient treatment by selfadministered subcutaneous injection.

Methods

- Prospective cohort
- Patients on long-term oral anticoagulants
- Temporary discontinuation
- Low molecular weight heparin
- Out-patient management

Patients

Number of patients = 1082Male/Female = 618/464Average age (yrs) = 65.6

Anticoagulant Management

- Discontinue oral A/C day 5 pre-procedure
- INR day 4/5 pre-procedure
- If INR <2.0 start LMWH (enoxaparin or dalteparin)
- If INR >2.0 repeat above next day
- Continue LMWH until evening prior to procedure

Dalteparin Regimen

- 100 antifactor Xa units/kg subcutaneously twice daily
- Last injection administered 12 hours prior to procedure
- First injection after the procedure 8-12 hours post and after haemostasis secure
- Oral anticoagulants resumed evening of procedure or next day
- Dalteparin continued until INR therapeutic

Enoxaparin Regimen

- 1mg/kg subcutaneously twice daily
- Last injection administered 12 hours prior to procedure
- First injection after the procedure 8-12 hours post and after haemostasis secure
- Oral anticoagulants resumed evening of procedure or next day
- Enoxaparin continued until INR therapeutic

Indications for Long-term Anticoagulants

Mechanical MVR (sinus)	65
Mechanical MVR (AF)	61
Mechanical AVR (Sinus)	170
Mechanical AVR (AF)	29
Bioprosthetic MVR (Sinus)	2
Bioprosthetic MVR (AF)	12
Bioprosthetic AVR (Sinus)	6
Bioprosthetic AVR (AF)	9
Other valve	47

Indications for Long-term Anticoagulants

Lone AF	392
Recurrent VTE	87
Embolic CVA/TIA/VTE	116
Lupus with VTE	7
CAD +/- LV thrombus	62
Thrombophilia	15
PVD	2

Reasons for Interruption of Anticoagulants

General surgery	227
Major	95
Minor	132
Urological surgery	36
Major	22
Minor	14
Invasive diagnostic procedures	346
Cardiac surgery	230
Major	77
Minor	153
Orthopaedic surgery	51
Vascular surgery	35
Dental surgery	116
Eye surgery	40
Neurosurgery	1

Peri-operative Regimens

Days off oral anticoagulants 6.00

LMWH doses pre-procedure 5.60

LMWH doses post-procedure 5.38

Peri-operative Regimens

No pre-procedure LMWH Pre-procedure Vit K No post-procedure LMWH - cardiac surgery - epidural catheter - major urological surgery

- IV heparin

25 13 196

Adverse Events

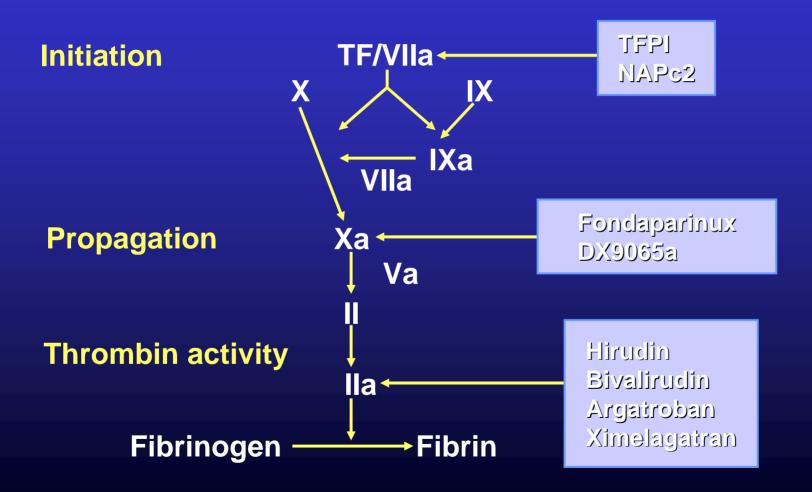
Minor bleeding28 (7.6%)Major bleeding3 (0.27%)Bruising at injection site38 (3.5%)Thromboembolic events0 (0.0%)Deaths2

Average Nursing Time

Teach self-injection Arrange drug supply Give specific written instructions **30-45 minutes** Patients given a contact telephone number in case of problems with injections

Injections

Self Family Nurse


956 (88.3%)
77 (7.1%)
49 (4.6%)

Conclusion

- Low molecular weight heparin administered sc on an outpatient basis is a practical alternative to iv heparin to cover temporary interruption of oral anticoagulants for operative, dental or invasive diagnostic procedures in patients who are at a high risk for recurrent thrombosis or systemic embolic events.
- Low molecular weight heparin can be self-administered subcutaneously by most patients for this indication

New Anticoagulants

Coagulation cascade

Adapted with permission from Weitz J, Hirsh J. Chest. 2001;119:95S.